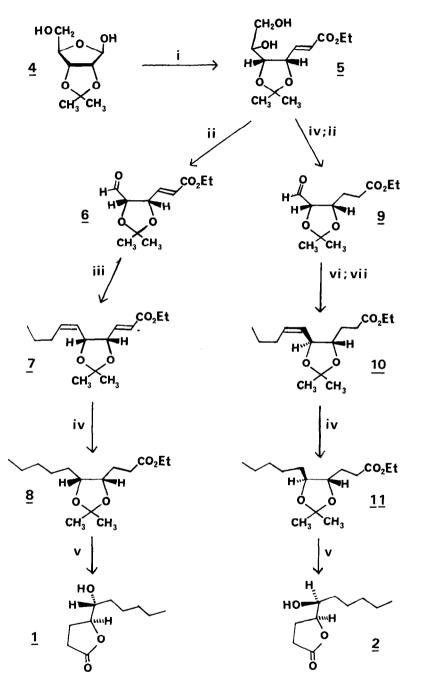

THE ENANTIOSPECIFIC SYNTHESIS OF $(4\underline{s},5\underline{r})$ -AND $(4\underline{s},5\underline{s})$ -4,5-DIHYDROXYDECANOIC ACID γ -LACTONES, PROPOSED AUTOREGULATORS FROM STREPTOMYCES GRISEUS

Roderick D. Cooper, Veerappa B. Jigajinni, and Richard H. Wightman,* Department of Chemistry, Heriot-Watt University, Riccarton, Edinburgh, EH14 4AS, Scotland.

Summary – Both the (45,5R)- and (45,5S)-isomers of 4,5-dihydroxydecanoic acid γ -lactone, natural products and proposed autoregulators of Streptomyces Griseus, have been synthesised directly and in high yield from \underline{D} -ribose via a common intermediate.

Recently, the isolation was reported of two novel natural products from strains of <u>Streptomyces griseus</u>, to which were assigned the structures <u>1</u> and <u>2</u>, the (4S,5R) - and (4S,5S) - isomers respectively of 4,5-dihydroxydecanoic acid γ -lactone¹. These compounds were originally claimed¹ to have autoregulatory properties, inducing the formation of aerial mycelium and the production of the anthracyclinone antibiotic leukaemomycin by mutant strains of <u>S. griseus</u> which had lost the ability to produce the antibiotic. This property is reminiscent of the behaviour of the well-established autoregulator A-factor 3² which


induces streptomycin production by inactive mutants of S.griseus.

Very recently, however, the claim of biological activity for $\underline{1}$ and $\underline{2}$ has been retracted³, although their status as novel natural products remains secure, and it seems likely that the autoregulatory activity observed was due to contamination of $\underline{1}$ and $\underline{2}$ by trace amounts of the highly potent A-factor $\underline{3}$. The original report of biological activity prompted us to develop a concise high-yielding synthetic route to both $\underline{1}$ and $\underline{2}$ in enantiomerically-pure forms. A multistep synthesis of the (45,5R)-isomer $\underline{1}$, from triacety1 \underline{D} -glucal, has been reported recently⁴, as have some improvements on this route⁵.

2,3-Q-Isopropylidene-D-ribose (4), readily available in one step from the free sugar⁶, underwent Wittig reaction with carboethoxymethylene triphenylphosphorane $(CH_2Cl_2, R.T., 18h)^7$ to give the <u>trans</u>-alkene 5, which, without rigorous purification, was treated with sodium periodate to give the somewhat unstable aldehyde $6^{8,9}$ (94% from 4) as an oil. Addition of this aldehyde to butylidenetriphenylphosphorane (generated with BuLi, THF,0[°]) gave the oily diene ester 7 (84%) as predominantly the 2E,6Z-isomer⁹. Hydrogenation proceeded virtually quantitatively to the saturated ester 8^9 , which on exposure to TFA-water (4:1) gave after chromatography the oily (4S,5R)- γ -lactone 1 (91%, 68% from isopropylidene ribose 4), $[\alpha]_D$ + 8.6[°](c 0.9,CCl_4) [lit. ${}^4[\alpha]_D$ + 11[°] (c 1.37,CCl_4)], ν (CHCl₃) 1772 cm⁻¹, with spectroscopic properties in excellent agreement⁹ with those reported previously^{1,4}.

The isomeric lactone 2 could also be prepared from intermediate 5. Catalytic hydrogenation followed by periodate cleavage gave the saturated aldehyde 9^9 (81% from 4). On treatment with K_2CO_3 in methanol¹⁰, 9 underwent ready epimerisation to give the <u>trans</u>-disubstituted dioxolane system¹¹, and after reaction with butylidene triphenylphosphorane, alkene 10^9 was isolated in 79% yield. Hydrogenation to 11 (97%) and treatment with aqueous trifluoroacetic acid gave the (45,55)-lactone 2 (94%, 58% from 4) as an oil, $[\alpha]_D + 24.8^{\circ}(c \ 0.7, CHCl_3) \vee (CHCl_3)$ 1775 cm⁻¹ the n.m.r. spectrum of which was in complete agreement with that reported and illustrated¹ for the natural product. In particular, the signal for H-5 appeared at δ 3.56, with the complete absence of the absorbtion at δ 3.94 due to H-5 of the isomer 1.

<u>Acknowledgements</u> - We thank the Scottish Education Department (Grant to R.D.C.) and Nuffield Foundation (One-Year Science Research Fellowship to R.H.W.) for financial support, Dr. J.-R. Pougny (Orléans) for providing a copy of ref. 4 in advance of publication, and Dr. I.H. Sadler for highfield n.m.r. spectra obtained on the SERC facility at the University of Edinburgh.

i, Ph_3PCHCO_2Et , CH_2Cl_2 , RT, 18h; ii, $NaIO_4$, $MeOH/H_2O$; iii, $Ph_3P-C_4H_9.Br$, BuLi, THF, O^O , then add aldehyde; iv, H_2 , Pd/C, MeOH; v, TFA-H₂O (4:1), RT, 1h; vi, K_2CO_3 , MeOH, RT, 2h; vii, as iii, but 2 equiv. phosphorane.

References and Notes

- U. Gräfe, G. Reinhardt, W. Schade, D. Krebs, I. Eritt, W.F. Fleck,
 E. Heinrich and L. Radics, J. Antibiotics, 35, 609 (1982).
- 2. K. Mori, Tetrahedron Lett., 22, 3431 (1981), and refs. therein.
- 3. U. Gräfe and I. Eritt, J. Antibiotics, 36, 1592 (1983).
- 4. L. Stamatatos, P. Sinay, and J.-R. Pougny, Tetrahedron, 40, 1713 (1984).
- 5. J.-R. Pougny, Tetrahedron Lett., 25, 2363 (1984).
- 6. N.A. Hughes and P.R.H. Speakman, Carbohydr. Res., 1, 171 (1965).
- 7. c.f. P.D. Kane and J. Mann, J. Chem. Soc., Chem. Commun., 224 (1983).
- Satisfactory spectroscopic and analytical data were obtained on all new compounds.
- Selected ¹H n.m.r. data (CDCl₂): <u>6</u> (100 MHz) δ 1.48, 1.64(each 3H, s), 4.25 9. (2H, q, -OCH₂CH₂), 4.84(1H, dd, J 8, 3 Hz, H-5), 5.90(1H, t, J~8 Hz, H-4), 6.04(1H, d, J 12 Hz, H-2), 6.30 (1H, dd, J 12, 8 Hz, H-3), 9.64(1H, d, J 3 Hz, CHO). 7 (200 MHz) δ1.41, 1.53 (each 3H, s), 2.08 (2H, m), 4.18 (2H, q), 4.71 (1H, td, J ~6.2 and 1.4 Hz), 5.06 (1H, t, J ~7 Hz), 5.33 (1H, m, H-6), 5.63(1H, dt, J 11.0 and 7.45 Hz, H-7), 6.04(1H, dd, J 15.6 and 1.5 Hz, H-2), 6.79 (1H, dd, J 15.6 and 5.6 Hz, H-3). 8 (200 MHz) 8 1.33 and 1.42 (each 3H, s), ~1.4 (8H, m), 1.75(2H, q, H-3), 2.45 (2H, m, H-2), 4.05 (2H, m, H-4, H-5), 4.12 (2H, q, ethyl). 1 (360 MHz)δ 2.13(1H, dddd, J 12.8, 9.7, 7.4, 5.4 Hz, H-3a), 2.26 (1H, dddd, J 12.8, 10.0, 8.5, 7.2 Hz, H-3b), 2.52(1H, ddd, J 17.8, 9.7, 8.5 Hz, H-2a), 2.59(1H, ddd, J 17.8, 10.0, 5.4 Hz, H-2b), 3.94 (1H, dt, J 6.4, 3.3 Hz, H-5), 4.42 (1H, dt, J 7.3, 3.3 Hz, H-4). 9 (100 MHz) δ 1.36, 1.52 (each 3H, s), 1.8(2H, m), 2.35(2H, m), 4.08 (2H, q), 4.3 (2H, m), 9.60(1H, d, J 3 Hz). 10 (200 MHz) 8 1.37 (6H, s, CMe₂), 3.6 (1H, m, H-4), 4.11(2H, q, ethyl), 4.36(1H, t, J ~8.5 Hz, H-5), 5.33 (1H, dd, J 10.8, 9.2 Hz, H-6), 5.66 (1H, dt, J 10.8, 7.5 Hz, H-7). <u>11</u> (200 MHz) &1.35 (6H, s, CMe₂), 1.5, 1.9, 2.4 (each 2H, m), 3.59(2H, m, H-4, H-3), 4.12 (2H, q, ethyl). 2 (360 MHz),δ 2.10(1H, dddd, J 12.8, 9.9, 8.9, 7.5 Hz, H-3a) 2.24(1H, dddd, J 12.8, 9.5, 7.4, 5.2 Hz, H-3b), 2.52 (1H, ddd, J 17.8, 9.5, 8.9 Hz, H-2a), 2.60(1H, ddd, J 17.8, 9.9, 5.2 Hz, H-2b), 3.56(1H, m, H-5), 4.40(1H, dt, J 7.4, 4.6 Hz, H-4).
- 10. cf. A.W.M. Lee, V.S. Martin, S. Masamune, K.B. Sharpless, and F.J. Walker, J. Am. Chem. Soc., 104, 3515 (1982).
- 11. The nature of the material after the epimerisation is not completely clear. The aldehyde signal in the 1 H n.m.r. is weak, and extra signals ascribable to methoxy groups are present. It is likely that the material is predominantly a mixture of diastereomeric hemi-acetals.¹⁰ Reaction with <u>2 equivalents</u> of phosphorane gives <u>10</u> in high yield.

(Received in UK 10 August 1984)